This article is also a Jupyter Notebook available to be run from the top down. There will be code snippets that you can then run in any environment.

Below are the versions of fastai, fastcore, and wwf currently running at the time of writing this:

  • fastai: 2.1.10
  • fastcore: 1.3.13
  • wwf: 0.0.7

Here we deal with a single leaf image and we have to predict wether the leaf is healthy, has multiple diseases, has rust, has scab.
So one input image and 4 columns to predict.
In the evaluation we have For each image_id in the test set, you must predict a probability for each target variable. so we'll set it up as a regression problem.

Getting the data:

The data is available here.

from fastai.vision.all import *
import pandas as pd

Download and unzip your data to a folder called plant

path= 'plant/'

Let us see what is there in train.csv

train = pd.read_csv(path+'train.csv')
train.head()
image_id healthy multiple_diseases rust scab
0 Train_0 0 0 0 1
1 Train_1 0 1 0 0
2 Train_2 1 0 0 0
3 Train_3 0 0 1 0
4 Train_4 1 0 0 0

We need to create a tuple is (x,y) for our model to train. So we'll create like this (image_id, [healthy multiple_diseases rust scab])Let's create a new column combined which is a list of the dependent variables

train['combined'] = train[['healthy','multiple_diseases','rust','scab']].values.tolist()
train.head()
image_id healthy multiple_diseases rust scab combined
0 Train_0 0 0 0 1 [0, 0, 0, 1]
1 Train_1 0 1 0 0 [0, 1, 0, 0]
2 Train_2 1 0 0 0 [1, 0, 0, 0]
3 Train_3 0 0 1 0 [0, 0, 1, 0]
4 Train_4 1 0 0 0 [1, 0, 0, 0]

For show_batch to work we need to add the ability for a list to have show_title

class TitledList(list, ShowTitle):
    _show_args = {'label': 'text'}
    def show(self, ctx=None, **kwargs):
        "Show self"
        return show_title(self, ctx=ctx, **merge(self._show_args, kwargs))
class ToListTensor(DisplayedTransform):
    "Transform to int tensor"
    # order = 10 #Need to run after PIL transforms on the GPU
    _show_args = {'label': 'text'}
    def __init__(self, split_idx=None,):
        super().__init__(split_idx=split_idx)

    def encodes(self, o): return o
    def decodes(self, o): return TitledList(o)

Building our DataLoaders

Independent variable is the image we'll use a ImageBlock.
Dependent varaible we'll use a RegressionBlock, here we need to set c_out.
And we add ToListTensor to the get_y

blocks = [ImageBlock, RegressionBlock(c_out=4)]

item_tfms = [Resize(150)];# size should be bigger
batch_tfms = [*aug_transforms(flip_vert=True,size=(128)), Normalize.from_stats(*imagenet_stats)]
splitter = RandomSplitter()
plant = DataBlock(blocks =blocks,
                  get_x = ColReader('image_id', pref=f'gdrive/My Drive/kaggle/plant/images/',suff='.jpg'),
                  get_y = Pipeline([ColReader('combined'),ToListTensor]),
                  splitter =splitter,
                  item_tfms=item_tfms,
                  batch_tfms = batch_tfms,
                  n_inp = 1
                  )
dls = plant.dataloaders(train)
dls.show_batch(nrows=2,ncols=2,figsize=(10,10))
plant.summary(train)

key things to notice:
[0, 0, 0, 1] becomes tensor([0., 0., 0., 1.])

dls.c = 4

Training

model = resnet18

Choose an appropriate Loss function and accuracy for a regression problem

learn = cnn_learner(dls, model, metrics=[MSELossFlat()], loss_func=L1LossFlat(),y_range=(0,1),)
learn.fine_tune(2)
epoch train_loss valid_loss None time
0 0.411631 0.308295 0.213967 02:43
epoch train_loss valid_loss None time
0 0.272085 0.216648 0.156882 03:25
1 0.230767 0.187466 0.134689 03:26

Inference

test_img = pd.read_csv(path+'test.csv')
dl = learn.dls.test_dl(test_img)
probs,_ = learn.get_preds(dl=dl)
p1 = pd.DataFrame(probs,columns=[['healthy','multiple_diseases','rust','scab']])
p1['image_id'] = test_img.image_id
cols = ['image_id','healthy','multiple_diseases','rust','scab']
p1[cols].head()
image_id healthy multiple_diseases rust scab
0 Test_0 0.025949 0.068522 0.773150 0.164443
1 Test_1 0.008960 0.799088 1.000000 0.000218
2 Test_2 0.004088 0.243557 0.002493 0.999968
3 Test_3 0.999977 0.052390 0.000904 0.000888
4 Test_4 0.003274 0.480604 1.000000 0.000044